Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731940

RESUMEN

Amyloid fibroproliferation leads to organ damage and is associated with a number of neurodegenerative diseases affecting populations worldwide. There are several ways to protect against fibril formation, including inhibition. A variety of organic compounds based on molecular recognition of amino acids within the protein have been proposed for the design of such inhibitors. However, the role of macrocyclic compounds, i.e., thiacalix[4]arenes, in inhibiting fibrillation is still almost unknown. In the present work, the use of water-soluble thiacalix[4]arene derivatives for the inhibition of hen egg-white lysozyme (HEWL) amyloid fibrillation is proposed for the first time. The binding of HEWL by the synthesized thiacalix[4]arenes (logKa = 5.05-5.13, 1:1 stoichiometry) leads to the formation of stable supramolecular systems capable of stabilizing the protein structure and protecting against fibrillation by 29-45%. The macrocycle conformation has little effect on protein binding strength, and the native HEWL secondary structure does not change via interaction. The synthesized compounds are non-toxic to the A549 cell line in the range of 0.5-250 µg/mL. The results obtained may be useful for further investigation of the anti-amyloidogenic role of thiacalix[4]arenes, and also open up future prospects for the creation of new ways to prevent neurodegenerative diseases.


Asunto(s)
Ácidos Carboxílicos , Muramidasa , Muramidasa/química , Humanos , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacología , Animales , Células A549 , Amiloide/química , Amiloide/metabolismo , Amiloide/antagonistas & inhibidores , Unión Proteica , Fenoles/química , Fenoles/farmacología , Calixarenos/química , Calixarenos/farmacología , Sulfuros
2.
Mol Ther Nucleic Acids ; 35(2): 102195, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38741614

RESUMEN

G protein-coupled receptors (GPCRs) are the major targets of existing drugs for a plethora of human diseases and dominate the pharmaceutical market. However, over 50% of the GPCRs remain undruggable. To pursue a breakthrough and overcome this situation, there is significant clinical research for developing RNA-based drugs specifically targeting GPCRs, but none has been approved so far. RNA therapeutics represent a unique and promising approach to selectively targeting previously undruggable targets, including undruggable GPCRs. However, the development of RNA therapeutics faces significant challenges in areas of RNA stability and efficient in vivo delivery. This review presents an overview of the advances in RNA therapeutics and the diverse types of nanoparticle RNA delivery systems. It also describes the potential applications of GPCR-targeted RNA drugs for various human diseases.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38747985

RESUMEN

Development of theranostic nanomedicines to tackle glioma remains to be challenging. Here, we present an advanced blood-brain barrier (BBB)-crossing nanovaccine based on cancer cell membrane-camouflaged poly(N-vinylcaprolactam) (PVCL) nanogels (NGs) incorporated with MnO2 and doxorubicin (DOX). We show that the disulfide bond-cross-linked redox-responsive PVCL NGs can be functionalized with dermorphin and imiquimod R837 through cell membrane functionalization. The formed functionalized PVCL NGs having a size of 220 nm are stable, can deplete glutathione, and responsively release both Mn2+ and DOX under the simulated tumor microenvironment to exert the chemo/chemodynamic therapy mediated by DOX and Mn2+, respectively. The combined therapy induces tumor immunogenic cell death to maturate dendritic cells (DCs) and activate tumor-killing T cells. Further, the nanovaccine composed of cancer cell membranes as tumor antigens, R837 as an adjuvant with abilities of DC maturation and macrophages M1 repolarization, and MnO2 with Mn2+-mediated stimulator of interferon gene activation of tumor cells can effectively act on both targets of tumor cells and immune cells. With the dermorphin-mediated BBB crossing, cell membrane-mediated homologous tumor targeting, and Mn2+-facilitated magnetic resonance (MR) imaging property, the designed NG-based theranostic nanovaccine enables MR imaging and combination chemo-, chemodynamic-, and imnune therapy of orthotopic glioma with a significantly decreased recurrence rate.

4.
Bioact Mater ; 38: 45-54, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38699237

RESUMEN

Effective treatment of Parkinson's disease (PD), a prevalent central neurodegenerative disorder particularly affecting the elderly population, still remains a huge challenge. We present here a novel nanomedicine formulation based on bioactive hydroxyl-terminated phosphorous dendrimers (termed as AK123) complexed with fibronectin (FN) with anti-inflammatory and antioxidative activities. The created optimized AK123/FN nanocomplexes (NCs) with a size of 223 nm display good colloidal stability in aqueous solution and can be specifically taken up by microglia through FN-mediated targeting. We show that the AK123/FN NCs are able to consume excessive reactive oxygen species, promote microglia M2 polarization and inhibit the nuclear factor-kappa B signaling pathway to downregulate inflammatory factors. With the abundant dendrimer surface hydroxyl terminal groups, the developed NCs are able to cross blood-brain barrier (BBB) to exert targeted therapy of a PD mouse model through the AK123-mediated anti-inflammation for M2 polarization of microglia and FN-mediated antioxidant and anti-inflammatory effects, thus reducing the aggregation of α-synuclein and restoring the contents of dopamine and tyrosine hydroxylase to normal levels in vivo. The developed dendrimer/FN NCs combine the advantages of BBB-crossing hydroxyl-terminated bioactive per se phosphorus dendrimers and FN, which is expected to be extended for the treatment of different neurodegenerative diseases.

5.
Biomater Sci ; 12(10): 2705-2716, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38607326

RESUMEN

Developing effective nanomedicines to cross the blood-brain barrier (BBB) for efficient glioma theranostics is still considered to be a challenging task. Here, we describe the development of macrophage membrane (MM)-coated nanoclusters (NCs) of ultrasmall iron oxide nanoparticles (USIO NPs) with dual pH- and reactive oxygen species (ROS)-responsivenesses for magnetic resonance (MR) imaging and chemotherapy/chemodynamic therapy (CDT) of orthotopic glioma. Surface citrate-stabilized USIO NPs were solvothermally synthesized, sequentially modified with ethylenediamine and phenylboronic acid, and cross-linked with gossypol to form gossypol-USIO NCs (G-USIO NCs), which were further coated with MMs. The prepared MM-coated G-USIO NCs (G-USIO@MM NCs) with a mean size of 99.9 nm display tumor microenvironment (TME)-responsive gossypol and Fe release to promote intracellular ROS production and glutathione consumption. With the MM-mediated BBB crossing and glioma targeting, the G-USIO@MM NCs can specifically inhibit orthotopic glioma in vivo through the gossypol-mediated chemotherapy and Fe-mediated CDT. Meanwhile, USIO NPs can be dissociated from the NCs under the TME, thus allowing for effective T1-weighted glioma MR imaging. The developed G-USIO@MM NCs with simple components and drug as a crosslinker are promising for glioma theranostics, and may be extended to tackle other cancer types.


Asunto(s)
Glioma , Macrófagos , Nanomedicina Teranóstica , Glioma/diagnóstico por imagen , Glioma/tratamiento farmacológico , Glioma/metabolismo , Glioma/patología , Animales , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Nanopartículas Magnéticas de Óxido de Hierro/química , Imagen por Resonancia Magnética , Humanos , Línea Celular Tumoral , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Especies Reactivas de Oxígeno/metabolismo , Membrana Celular/metabolismo , Microambiente Tumoral/efectos de los fármacos , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos
6.
J Mater Chem B ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647018

RESUMEN

Ultrasmall iron oxide nanoparticles (USIO NPs) are expected to become the next generation T1 contrast agents; however, their diagnostic and therapeutic potential for primary brain tumors (such as glioblastoma multiforme, GBM) is yet to be explored. At present, the main challenge is the effective hindering of biological barriers, including the blood-brain barrier (BBB) and the blood-brain tumor barrier (BBTB). Herein, we aimed to investigate whether the USIO NPs, in combination with MR-guided focused ultrasound (MRgFUS), could intensify MR imaging of GBM. In this study, we presented zwitterionic USIO NPs for enhanced MR imaging of both xenografted and orthotopic GBM mouse models. We first synthesized citric-stabilized USIO NPs with a size of 3.19 ± 0.76 nm, modified with ethylenediamine, and decorated with 1,3-propanesultone (1,3-PS) to form USIO NPs-1,3-PS. The obtained USIO NPs-1,3-PS exhibited good cytocompatibility and cellular uptake efficiency. MRgFUS, in combination with microbubbles, provided a non-invasive and safe technique for BBB opening, which, in turn, promoted the delivery of USIO NPs-1,3-PS in orthotopic GBM. This developed USIO NP nanoplatform may improve the precision imaging of solid tumors and therapeutic efficacy in the central nervous system.

7.
ACS Nano ; 18(15): 10625-10641, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38563322

RESUMEN

Development of nanomedicines that can collaboratively scavenge reactive oxygen species (ROS) and inhibit inflammatory cytokines, along with osteogenesis promotion, is essential for efficient osteoarthritis (OA) treatment. Herein, we report the design of a ROS-responsive nanomedicine formulation based on fibronectin (FN)-coated polymer nanoparticles (NPs) loaded with azabisdimethylphoaphonate-terminated phosphorus dendrimers (G4-TBP). The constructed G4-TBP NPs-FN with a size of 268 nm are stable under physiological conditions, can be specifically taken up by macrophages through the FN-mediated targeting, and can be dissociated in the oxidative inflammatory microenvironment. The G4-TBP NPs-FN loaded with G4-TBP dendrimer having intrinsic anti-inflammatory property and FN having both anti-inflammatory and antioxidative properties display integrated functions of ROS scavenging, hypoxia attenuation, and macrophage M2 polarization, thus protecting macrophages from apoptosis and creating designed bone immune microenvironment for stem cell osteogenic differentiation. These characteristics of the G4-TBP NPs-FN lead to their effective treatment of an OA model in vivo to reduce pathological changes of joints including synovitis inhibition and cartilage matrix degradation and simultaneously promote osteogenic differentiation for bone repair. The developed nanomedicine formulation combining the advantages of both bioactive phosphorus dendrimers and FN to treat OA may be developed for immunomodulatory therapy of different inflammatory diseases.


Asunto(s)
Dendrímeros , Nanopartículas , Osteoartritis , Humanos , Especies Reactivas de Oxígeno/metabolismo , Osteogénesis , Dendrímeros/uso terapéutico , Osteoartritis/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Fósforo/uso terapéutico
9.
Adv Healthc Mater ; : e2400114, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581263

RESUMEN

The development of functional nanoplatforms to improve the chemotherapy outcome and inhibit distal cancer cell metastasis remains an extreme challenge in cancer management. In this work, a human-derived PC-3 cancer cell membrane-camouflaged chitosan-polypyrrole nanogel (CH-PPy NG) platform, which can be loaded with chemotherapeutic drug docetaxel (DTX) and RANK siRNA for targeted chemotherapy and gene silencing-mediated metastasis inhibition of late-stage prostate cancer in a mouse model, is reported. The prepared NGs with a size of 155.8 nm show good biocompatibility, pH-responsive drug release profile, and homologous targeting specificity to cancer cells, allowing for efficient and precise drug/gene co-delivery. Through in-vivo antitumor treatment in a xenografted PC-3 mouse tumor model, it is shown that such a CH-PPy NG-facilitated co-delivery system allows for effective chemotherapy to slow down the tumor growth rate, and effectively inhibits the metastasis of prostate cancer to the bone via downregulation of the RANK/RANKL signaling pathway. The created CH-Ppy NGs may be utilized as a promising platform for enhanced chemotherapy and anti-metastasis treatment of prostate cancer.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38456205

RESUMEN

The application of nanotechnology in biological and medical fields have resulted in the creation of new devices, supramolecular systems, structures, complexes, and composites. Dendrimers are relatively new nanotechnological polymers with unique features; they are globular in shape, with a topological structure formed by monomeric subunit branches diverging to the sides from the central nucleus. This review analyzes the main features of dendrimers and their applications in biology and medicine regarding cancer treatment. Dendrimers have applications that include drug and gene carriers, antioxidant agents, imaging agents, and adjuvants, but importantly, dendrimers can create complex nanosized constructions that combine features such as drug/gene carriers and imaging agents. Dendrimer-based nanosystems include different metals that enhance oxidative stress, polyethylene glycol to provide biosafety, an imaging agent (a fluorescent, radioactive, magnetic resonance imaging probe), a drug or/and nucleic acid that provides a single or dual action on cells or tissues. One of major benefit of dendrimers is their easy release from the body (in contrast to metal nanoparticles, fullerenes, and carbon nanotubes), allowing the creation of biosafe constructions. Some dendrimers are already clinically approved and are being used as drugs, but many nanocomplexes are currently being studied for clinical practice. In summary, dendrimers are very useful tool in the creation of complex nanoconstructions for personalized nanomedicine. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Asunto(s)
Dendrímeros , Nanotubos de Carbono , Neoplasias , Dendrímeros/uso terapéutico , Portadores de Fármacos/uso terapéutico , Nanotecnología , Nanomedicina/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico
11.
ACS Nano ; 18(14): 10142-10155, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38526307

RESUMEN

Fully mobilizing the activities of multiple immune cells is crucial to achieve the desired tumor immunotherapeutic efficacy yet still remains challenging. Herein, we report a nanomedicine formulation based on phosphorus dendrimer (termed AK128)/programmed cell death protein 1 antibody (aPD1) nanocomplexes (NCs) that are camouflaged with M1-type macrophage cell membranes (M1m) for enhanced immunotherapy of orthotopic glioma. The constructed AK128-aPD1@M1m NCs with a mean particle size of 160.3 nm possess good stability and cytocompatibility. By virtue of the decorated M1m having α4 and ß1 integrins, the NCs are able to penetrate the blood-brain barrier to codeliver both AK128 with intrinsic immunomodulatory activity and aPD1 to the orthotopic glioma with prolonged blood circulation time. We show that the phosphorus dendrimer AK128 can boost natural killer (NK) cell proliferation in peripheral blood mononuclear cells, while the delivered aPD1 enables immune checkpoint blockade (ICB) to restore the cytotoxic T cells and NK cells, thus promoting tumor cell apoptosis and simultaneously decreasing the tumor distribution of regulatory T cells vastly for improved glioma immunotherapy. The developed nanomedicine formulation with a simple composition achieves multiple modulations of immune cells by utilizing the immunomodulatory activity of nanocarrier and antibody-mediated ICB therapy, providing an effective strategy for cancer immunotherapy.


Asunto(s)
Dendrímeros , Glioma , Humanos , Fósforo , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Biomimética , Glioma/terapia , Glioma/patología , Inmunoterapia , Células Asesinas Naturales , Anticuerpos/metabolismo , Linfocitos T Citotóxicos , Barrera Hematoencefálica/metabolismo , Microambiente Tumoral
12.
Biomater Sci ; 12(6): 1346-1356, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38362780

RESUMEN

Glioma, as a disease of the central nervous system, is difficult to be treated due to the presence of the blood-brain barrier (BBB) that can severely hamper the efficacy of most therapeutic agents. Hence, drug delivery to glioma in an efficient, safe, and specifically targeted manner is the key to effective treatment of glioma. With the advances in nanotechnology, targeted drug delivery systems have been extensively explored to deliver chemotherapeutic agents, nucleic acids, and contrast agents. Among these nanocarriers, dendrimers have played a significant role since they possess highly branched structures, and are easy to be decorated, thus offering numerous binding sites for various drugs and ligands. Dendrimers can be designed to cross the BBB for glioma targeting, therapy or theranostics. In this review, we provide a concise overview of dendrimer-based carrier designs including dendrimer surface modification with hydroxyl termini, peptides, and transferrin etc. for glioma imaging diagnostics, chemotherapy, gene therapy, or imaging-guided therapy. Finally, the future perspectives of dendrimer-based glioma theraputics are also briefly discussed.


Asunto(s)
Dendrímeros , Glioma , Humanos , Barrera Hematoencefálica/metabolismo , Dendrímeros/química , Medicina de Precisión , Glioma/diagnóstico por imagen , Glioma/tratamiento farmacológico , Glioma/metabolismo , Sistemas de Liberación de Medicamentos/métodos
13.
ACS Nano ; 18(3): 2195-2209, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38194222

RESUMEN

Nanocarrier-based cytoplasmic protein delivery offers opportunities to develop protein therapeutics; however, many delivery systems are positively charged, causing severe toxic effects. For enhanced therapeutics, it is also of great importance to design nanocarriers with intrinsic bioactivity that can be integrated with protein drugs due to the limited bioactivity of proteins alone for disease treatment. We report here a protein delivery system based on anionic phosphite-terminated phosphorus dendrimers with intrinsic anti-inflammatory activity. A phosphorus dendrimer termed AK-137 with optimized anti-inflammatory activity was selected to complex proteins through various physical interactions. Model proteins such as bovine serum albumin, ribonuclease A, ovalbumin, and fibronectin (FN) can be transfected into cells to exert their respective functions, including cancer cell apoptosis, dendritic cell maturation, or macrophage immunomodulation. Particularly, the constructed AK-137@FN nanocomplexes display powerful therapeutic effects in acute lung injury and acute gout arthritis models by integrating the anti-inflammatory activity of both the carrier and protein. The developed anionic phosphite-terminated phosphorus dendrimers may be employed as a universal carrier for protein delivery and particularly utilized to deliver proteins and fight different inflammatory diseases with enhanced therapeutic efficacy.


Asunto(s)
Dendrímeros , Fosfitos , Dendrímeros/farmacología , Fósforo , Proteínas , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
14.
Biomacromolecules ; 25(2): 1171-1179, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38181417

RESUMEN

The development of nonviral dendritic polymers with a simple molecular backbone and great gene delivery efficiency to effectively tackle cancer remains a great challenge. Phosphorus dendrimers or dendrons are promising vectors due to their structural uniformity, rigid molecular backbones, and tunable surface functionalities. Here, we report the development of a new low-generation unsymmetrical cationic phosphorus dendrimer bearing 5 pyrrolidinium groups and one amino group as a nonviral gene delivery vector. The created AB5-type dendrimers with simple molecular backbone can compress microRNA-30d (miR-30d) to form polyplexes with desired hydrodynamic sizes and surface potentials and can effectively transfect miR-30d to cancer cells to suppress the glycolysis-associated SLC2A1 and HK1 expression, thus significantly inhibiting the migration and invasion of a murine breast cancer cell line in vitro and the corresponding subcutaneous tumor mouse model in vivo. Such unsymmetrical low-generation phosphorus dendrimers may be extended to deliver other genetic materials to tackle other diseases.


Asunto(s)
Dendrímeros , MicroARNs , Neoplasias , Animales , Ratones , Dendrímeros/química , Vectores Genéticos , MicroARNs/genética , Técnicas de Transferencia de Gen , Cationes , Fósforo
15.
ACS Nano ; 17(23): 23889-23902, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38006397

RESUMEN

Development of a nanoscale drug delivery system that can simultaneously exert efficient tumor therapeutic efficacy while creating the desired antitumor immune responses is still challenging. Herein, we report the use of a manganese dioxide (MnO2)-entrapping dendrimer nanocarrier to codeliver glucose oxidase (GOx) and cyclic GMP-AMP (cGAMP), an agonist of the stimulator of interferon genes (STING) for improved tumor chemodynamic/starvation/immune therapy. Methoxy poly(ethylene glycol) (mPEG)- and phenylboronic acid (PBA)-modified generation 5 (G5) poly(amidoamine) dendrimers were first synthesized and then entrapped with MnO2 nanoparticles (NPs) to generate the hybrid MnO2@G5-mPEG-PBA (MGPP) NPs. The created MGPP NPs with an MnO2 core size of 2.8 nm display efficient glutathione depletion ability, and a favorable Mn2+ release profile under a tumor microenvironment mimetic condition to enable Fenton-like reaction and T1-weighted magnetic resonance (MR) imaging. We show that the MGPP-mediated GOx delivery facilitates enhanced chemodynamic/starvation therapy of cancer cells in vitro, and further codelivery of cGAMP can effectively trigger immunogenic cell death (ICD) to strongly promote the maturation of dendritic cells. In a bilateral mouse colorectal tumor model, the dendrimer delivery nanosystem elicits a potent antitumor performance with a strong abscopal effect, greatly improving the overall mouse survival rate. Importantly, the dendrimer-mediated codelivery not only allows the coordination of Mn2+ with GOx and cGAMP for respective chemodynamic/starvation-triggered ICD and augmented STING activation to boost systemic antitumor immune responses, but also enables T1-weighted tumor MR imaging, potentially serving as a promising nanoplatform for enhanced antitumor therapy with desired immune responses.


Asunto(s)
Neoplasias Colorrectales , Dendrímeros , Nanopartículas , Neoplasias , Animales , Ratones , Compuestos de Manganeso/farmacología , Nucleótidos , Óxidos , Imagen por Resonancia Magnética , Glucosa Oxidasa , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/tratamiento farmacológico , Modelos Animales de Enfermedad , Espectroscopía de Resonancia Magnética , Microambiente Tumoral
16.
Biomater Sci ; 11(22): 7387-7396, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37791576

RESUMEN

Nanoplatforms with amplified passive tumor targeting and enhanced protein resistance can evade unnecessary uptake by the reticuloendothelial system and achieve high tumor retention for accurate tumor theranostics. To achieve this goal, we here constructed phosphorus core-shell tecto dendrimers (CSTDs) with a rigid aromatic backbone core as a nanoplatform for enhanced fluorescence and single-photon emission computed tomography (SPECT) dual-mode imaging of tumors. In this study, the phosphorus P-G2.5/G3 CSTDs (G denotes generation) were partially conjugated with tetraazacyclododecane tetraacetic acid (DOTA), cyanine5.5 (Cy5.5) and 1,3-propane sulfonate (1,3-PS) and then labeled with 99mTc. The formed P-G2.5/G3-DOTA-Cy5.5-PS CSTDs possess good monodispersity with a particle size of 10.1 nm and desired protein resistance and cytocompatibility. Strikingly, compared to the counterpart material G3/G3-DOTA-Cy5.5-PS with both the core and shell components being soft poly(amidoamine) dendrimers, the developed P-G2.5/G3-DOTA-Cy5.5-PS complexes allow for more efficient cellular uptake and more significant penetration in 3-dimensional tumor spheroids in vitro, as well as more significant tumor retention and accumulation for enhanced dual-mode fluorescence and SPECT (after labelling with 99mTc) tumor imaging in vivo. Our studies suggest that the rigidity of the core for the constructed CSTDs matters in the amplification of the tumor enhanced permeability retention (EPR) effect for improved cancer nanomedicine development.


Asunto(s)
Dendrímeros , Neoplasias , Humanos , Tomografía Computarizada de Emisión de Fotón Único , Línea Celular Tumoral
17.
Adv Sci (Weinh) ; 10(27): e2302044, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37532670

RESUMEN

Nanofibers are long, wire-like materials with nanoscale diameters and specific length diameter ratios. Nanofibers have porous reticular networks with remarkably high specific surface areas and significant interconnectivity between pores, allowing for the chemical modification and loading of drugs. Metallized nanofibers are novel materials that enhance the performance of attributes of conventional nanofibers by combining metals with nanofibers through electrostatic spinning doping, chemical modification, and loading approaches. Due to their unique physical and chemical properties, metallized nanofibers are diverse, rapidly developed materials in the fields of physical chemistry, materials science, and battery preparation. To date, with improvement in advanced preparation techniques and biocompatibility levels for materials, metallized nanofiber applications are gradually expanding into the biomedical field due to their excellent thermal and electrical conductivities and unique metal properties. In this review, the applications of metallized nanofibers in biomedicine are summarized. It is suggested to prepare metallized multifunctional nanofibers for tissue engineering, drug delivery, tumor treatment, wound healing, and biosensing applications by taking safety and stability as the main material selection guidelines. Finally, the development of nanofibers for biomedical applications is summarized and discussed.


Asunto(s)
Nanofibras , Nanofibras/química , Ingeniería de Tejidos/métodos , Sistemas de Liberación de Medicamentos/métodos , Porosidad , Cicatrización de Heridas
18.
Nano Lett ; 23(16): 7699-7708, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37565802

RESUMEN

Bone metastases are secondary malignant tumors that commonly occur after the spread of advanced cancer cells. We herein report the activatable semiconducting polymer nanoinducers (ASPNFP) that can amplify oxidative damage via sono-ferroptosis for bone metastasis treatment. ASPNFP are constructed by encapsulating plasma amine oxidase-based semiconducting polymer nanoparticles (SPNP) and Fe3O4 nanoparticles into singlet oxygen (1O2)-responsive nanocarriers. ASPNFP generate 1O2 under ultrasound (US) irradiation via a sonodynamic effect to destroy the stability of 1O2-responsive nanocarriers, allowing US-triggered releases of SPNP and Fe3O4 nanoparticles. SPNP decompose polyamines in tumor cells to produce acrolein and hydrogen peroxide (H2O2), in which H2O2 promotes Fenton reaction mediated by Fe3O4 nanoparticles for inducing enhanced ferroptosis and generation of hydroxyl radicals (•OH). The generated acrolein, 1O2, and •OH can simultaneously amplify the oxidative damage. ASPNFP thus mediate an amplified sono-ferroptosis effect to inhibit the growth of bone metastasis and restrict tumor metastasis.


Asunto(s)
Neoplasias Óseas , Ferroptosis , Nanopartículas , Neoplasias , Humanos , Acroleína , Peróxido de Hidrógeno , Neoplasias Óseas/tratamiento farmacológico , Estrés Oxidativo , Nanopartículas/uso terapéutico , Polímeros , Línea Celular Tumoral
19.
Adv Sci (Weinh) ; 10(29): e2302119, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37541435

RESUMEN

Injectable hydrogels have attracted increasing attention for promoting systemic antitumor immune response through the co-delivery of chemotherapeutics and immunomodulators. However, the biosafety and bioactivity of conventional hydrogel depots are often impaired by insufficient possibilities for post-gelling injection and means for biofunction integration. Here, an unprecedented injectable stimuli-responsive immunomodulatory depot through programming a super-soft DNA hydrogel adjuvant is reported. This hydrogel system encoded with adenosine triphosphate aptamers can be intratumorally injected in a gel formulation and then undergoes significant molecular conformation change to stimulate the distinct release kinetics of co-encapsulated therapeutics. In this scenario, doxorubicin is first released to induce immunogenic cell death that intimately works together with the polymerized cytosine-phosphate-guanine oligodeoxynucleotide (CpG ODN) in gel scaffold for effectively recruiting and activating dendritic cells. The polymerized CpG ODN not only enhances tumor immunogenicity but minimizes free CpG-induced splenomegaly. Furthermore, the subsequently released anti-programmed cell death protein ligand 1 (aPDL1) blocks the corresponding immune inhibitory checkpoint molecule on tumor cells to sensitize antitumor T-cell immunity. This work thus contributes to the first proof-of-concept demonstration of a programmable super-soft DNA hydrogel system that perfectly matches the synergistic therapeutic modalities based on chemotherapeutic toxicity, in situ vaccination, and immune checkpoint blockade.


Asunto(s)
Hidrogeles , Microambiente Tumoral , Adyuvantes Inmunológicos/farmacología , Antígenos de Neoplasias , ADN , Inmunoterapia , Adenosina Trifosfato
20.
Adv Healthc Mater ; 12(26): e2300967, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37470683

RESUMEN

Novel strategies to facilitate tumor-specific drug delivery and restore immune attacks remain to be developed to overcome the current limitations of chemotherapy. Herein, a cancer cell membrane (CM)-camouflaged and ultrasmall iron oxide nanoparticles (USIO NPs)-loaded polyethylenimine nanogel (NG) system is reported to co-deliver docetaxel (DTX) and CD47 siRNA (siCD47). The prepared co-delivery system exhibits good colloidal stability, biocompatibility, and r1 relaxivity (1.35 mM-1 s-1 ) and enables redox-responsive release of the loaded DTX in the tumor microenvironment. The NG system realizes homologous targeting delivery of DTX and siCD47 to murine breast cancer cells (4T1 cells) for efficient chemotherapy and gene silencing; thus, inducing immunogenic cell death (ICD) and restoring macrophage phagocytic effect through downregulation of "don't eat me" signals on cancer cells. Likewise, the co-delivery system can also act on macrophages to promote their M1 polarization, which can be combined with DTX-mediated ICD and antibody-mediated immune checkpoint blockade to generate effector T cells for robust chemoimmunotherapy. Further, the USIO NPs-incorporated NG system also allows for magnetic resonance imaging of tumors. The developed biomimetic NG system acting on both cancer cells and macrophages holds a promising potential for macrophage phagocytosis-restored chemoimmunotherapy.


Asunto(s)
Nanopartículas , Neoplasias , Ratones , Animales , Nanogeles , Biomimética , Polietileneimina , Línea Celular Tumoral , Docetaxel/farmacología , Fagocitosis , Macrófagos/metabolismo , Imagen por Resonancia Magnética , Neoplasias/metabolismo , Inmunoterapia/métodos , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA